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RESULTS FROM A TWO LAYER AND A REDUCED ]
GRAVITY MODEL OF THE ALBORAN SEA

INTRODUCTION

The circulation of the Alboran Sea is dependent on both

Atlantic and Mediterranean waters. Atlantic water flows through the
narrow (20 km wide) and shallow (300 m deep) Strait of Gibraltar into
the Alboran Sea forming a 150-200 m deep surface layer (Ovchinnikov,

1966; Lanoix, 1974; Katz, 1972). Mediterranean water enters the Alboran

at its open eastern boundary and flows slowly westward in the form of an

intermediate and lower layer. It has been suggested that even the

deepest water can exit through the Strait (Stommel et al., 1973). The

large volume transport of inflowing Atlantic water, 1 to 2 X 106 m3/sec, r

(Lacombe, 1971; Bethoux, 1979; Lacombe, 1982) retains its identity as a

narrow (30 km wide) jet with initial speeds of 100 cm/sec near the

Strait (Lacombe. 1961; Peluchon and Donguy, 1962; Grousson and Faroux,

1963; Lanoix, 1974; Cheney, 1977; Petit et al., 1978; and Wannamaker,

1979). The Jet enters the basin and flows northeast to approximatley

4"W, curves southward and then splits (Figure 1). Part of the jet flows

to the west and is incorporated in an anticyclonic gyre, while the

remainder flows southeast to Cape Tres Forcas and then along the African

coast forming the southern periphery of a cylconic circulation.

Satellite infrared imagery indicates variations in the shape,

location and intensity of the persistent anticylconic gyre which

dominates the western Alboran Sea. Hydrographic data and satellite L

infrared images support the year-round persistence of the gyre, although

its size and location varies (Stevenson, 1977; Cheney, 1978; Wannamaker,

1979; Burkov et al., 1979; Gallagher et al., 1981). In the eastern

portion of the Alboran Sea a general pattern of alternating cyclonic and

anticyclonic circulations has been observed (Cheney, 1978; Lanoix, A
1974). Satellite imagery shows that, compared to the western Alboran,

this circulation pattern is far more variable and of smaller scale.
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A study of circulation in the Alboran Sea begins by using the
simplest model capable of simulating major features of the

circulation. In a system with two so clearly defined layers, a reduced
gravity model may be used to determine the circulation of the upper

layer, and a two layer model to determine the entire system. The

reduced gravity model allows baroclinic instability and the inclusion of

bottom topography. Previous results using a semi-implicit reduced

gravity model with a rectangular geometry are discussed in Preller and

Hurlburt, (1982). We have now progressed to a reduced gravity model

with real geometry and a two layer model with geometry and bottom

topography.
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THE MODEL

The non-linear reduced gravity and two layer models, developed

for the Gulf of Mexico by Hurlburt and Thompson, (1980), have been

adapted and modified for the Alboran Sea. The reduced gravity model is

an explicit variant of the Hurlburt and Thompson model and is described

in detail by Preller and Heburn, (1983). The two layer model is solved

numerically using the economic semi-implicit method. The reduced

gravity model consists of an active upper layer and a lower layer which

is infinitely deep and at rest. The two layer model has an upper layer,

a finite lower layer and may include bottom topography (Figure 2). Both

models are stably stratified and have a fixed density contrast between

two immiscible layers. These models assume a hydrostatic, Boussinesq

fluid in a rotating right-handed coordiniate system on a -plane. The

vertically integrated model equations are:

-). ). -. .
L + V + V v + k x fV h VP +
at

(T - 'T2)/p + AVZVVi

at i

where

. a- a
ax ay

P2 1 =P" hl

*A

ht= i * hi (uii + vij)

g g(P2 - 1l)/P

-
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Figure 2. Two layer model cross section.
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f fo + a (y "Yo)

ri- T i +-r( 3

I 1, 2 indicates upper and lower layers

and x and y are tangent-plane Cartesian coordinates with x directed

eastward and y northward, ui and vi are the eastward and northward

velocity components in each layer, hi is the thickness of each layer, t

is time, g is the acceleration due to gravity, pi is the density of

seawater in layer I, fo and yo are the values of the Coriolis parameter -

and the y-coordinate at the southern boundary, T1 is the wind stress,

and is the interfacial stress.

Figure 3 depicts the irregular geometry and topography used in

the two layer experiments and the explicit reduced gravity cases. This

irregular boundary was created from the Synthetic Bathymetric Profiling

System (SYTBAPS) (Yanwyckhouse, 1973 and Vanwyckhouse, 1979) data set of

topography. These values were interpolated from the 10 minute

resolution of the model. The coastline was then drawn using a cutoff

depth of 20 m to eliminate errors existing on the boundary of the data

set. The four point island in the center of the basin is an idealized

representation of the Alboran Island. A four point island, 20 km X 10

kin, is the smallest allowed by the numerical schemes used in the

model. Except at the ports, boundaries are rigid and a no slip boundary

condition is prescribed on the tangential flow. Velocity is prescribed

at the inflow port. Normal flow at the outflow port is self-determined

with the integral constraint that the total transport out of each layer

match the inflow. In the two layer cases, the amplitude of the

tangential component was set to zero one-half the grid distance outside

the physical domain at both ports. A variation of the Orlanski boundary

condition (see Preller and Heburn, 1983) was used on outflow in the

explicit reduced gravity model.

-6-
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Model parameters for each of the model's standard cases are

given in Table 1. The only dissipation in the model, other than the

viscous boundary layer, is due to horizontal friction. The value for

the coefficient of eddy viscosity was chosen to keep the grid interval

Reynolds number

Re= 30,

thus keeping the effects of frictional damping from dominating the

solutions.

The value chosen for reduced gravity due to stratification was
appropriate for observed density differences in the Alboran Sea. In the

two layer model, the value of g' in the table is multiplied by
(HI + H2 )/H2 to yield the same internal values for gravity wave speed,

radius of deformation and Rossby wave speed as in the reduced gravity

model. The undisturbed upper layer thickness is based on many

observations of the Alboran Sea which show a sharp density-salinity

gradient at 150-200 m depth.

Horizontal grid spacing was chosen to allow the resolution of

the mesoscale features being studied in the Alboran Sea. A minimum of

8-10 grid points is necessary to properly resolve a feature. The

Alboran Gyre is defined with an average diameter of 100 km. Thus the

model has a minimum of 10 grid points with which to define this feature.

For cases using the irregular geometry, the western inflow port

is 20 km wide, an appropriate width for the Strait of Gibraltar, while

the eastern outflow port is 245 km wide. In the lower layer of the two

layer cases, the eastern boundary serves as the inflow port while the

Strait of Gibraltar becomes the outflow boundary. Inflow is exactly

compensated by outflow separately in each layer. Specification of the

model forcing is accomplished using one of two methods:

e By prescribing velocity, (vlin), or

-8-
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Table 1

MODEL PARAMETERS FOR THE PIVOTAL EXPERIMENT

Parameter Defini tion Value

A eddy viscosity 150 M2 sec 1

8 (df/dy) 2 X 10Ilm'sec 1

f Coroilis parameter 8 X 105 sec " .

9' reduced gravity due to

stratification .02 m sec-2

H1  undisturbed upper layer depth 200 m.

H2 undisturbed lower layer depth

reduced gravity

2 layer 2400 m

L X L horizontal dimensions of thex y
model domain 420 km x 280 km

Ax X y horizontal grid spacing for each

dependent variable 10 km x km

At time step reduced gravity 900 sec

2 layer 2700 sec

vli n  upper layer inflow velocity 30 cm/sec

v2tn lower layer inflow velocity .2 cm/sec

angle of inflow 21* north of east

ts  inflow spin up time constant 30 days
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* by prescribing transport, (Viin), and allowing the model to

determine the velocities.

Using a standard inflow velocity of 30 cm/sec through a 20 km wide 200 m

deep port determines an inflow transport of 1.2 x 106 m/sec or
(106 m/sec 1 1 sv) 1.2 sverdrups. This value is centered within the

limits of the observed transport. A standard inflow value of .2 cm/sec

was chosen for the lower layer to agree with observation. Transport out

of the Mediterranean is known to be less then incoming transport due to

the effect of evaporation being greater than precipitation. An inflow

of .2 cm/sec through a 245 km wide boundary which is a maximum of 2400 m

deep creates a mass transport of 1.1 sv. It also creates velocities

along the southern shelf near the Strait of Gibraltar of 10 cm/sec.
This also agrees with observation (personal communication - J.C.

Gascard). Inflow is spun up with a time constant of thirty days to

minimize excitation of high frequency waves. The standard ar '. of

inflow was chosen to be 21 north of east based on the geometric

orientation of the Strait of Gibraltar. This angle was varied based on

direct observations (Lacombe, 1961) and inferences from satellite

imagery.

The wind forcing is derived from climatological wind stresses

obtained from twenty years (1950-1970) of ship observations in the
Mediterranean (May 1982). Individual stresses were estimated from ship

-,observations of wind speed and direction using a quadratic aerodynamic

drag law with a drag coefficient dependent on the wind speed and J
stability. Monthly averages of the wind stresses were then calculated

by averaging the individual wind stress estimates from each month on a

one degree latitude by one degree longitude grid. These monthly

averages were bilinearly interpolated to the model grid (Figures 4, 5

and 6). Wind forcing in the model is cyclic with a period of one year.

-10-.2 1
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MODEL RESULTS

* Model results will be presented first in terms of two layer
results then explicit reduced gravity results. The numerical solutions
presented have evolved out to a steady state.

The pivotal two layer experiment used the parameters of
Tabl e 1. All solutions are presented in terms of pynocline height
anomaly (PA) the deviation of the interface between the upper and lower
layers from its initial rest position at 200 mn depth. Solid contours
indicate a deepening of the layer while dashed contours indicated a
shallowing of the layer. Closed solid contours represent regions of
anticyclonic circulation while closed dashed contours are regions of
cyclonic circulation . Figure 7a shows the steady state solution of the
pivotal case. The dominant feature observed is an anticyclonic gyre

2. representing the Alboran gyre occupying almost the entire western half
of the basin. This solution is quite similar to the semi-implicit
reduced gravity model solutions discussed by Preller and Hurlburt, 1982
(Figure 7b). The addition of a slowly moving lower layer seems to have
very little effect on the solutions. Figure 8 shows the lower layer

*velocity field for the pivotal case. Though flow enters the basin
uniformly, it is quickly steered by the topography to the southern shelf

and then exits through the Strait of Gibraltar. Although the velocity
field has a clearly defined pattern, magnitudes still remain very small
(< 10 cm/sec).

A more important effect seems to be the coastal feature, Cape
Tres Forcas and the Alboran Island. Figure 9a shows the steady state

two layer solution when inflow is prescribed due east. Cape Tres Forcas
serves to deflect the jet, not allowing it to abruptly hit the southern
boundary. This is brought out clearly by the semi-implicit reduced
gravity solution, Figure 9b, which uses rectangular geometry. The jet,

in this case, hits the flat wall and turns sharply upward enhancing the
cyclonic circulation north of the jet.

-14-
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INTERFPCE CEVIRT0ON 2L 15-V
280 OH2.0 M DRY= 360

280 ~ ~ --

M)~

A~a.
0 4- MM 420___

0((MM)2

... .. ... .. ... .. .. ........ .

0 WM) 600

Figure 7b. PA of the reduced gravity case at day 500. Inflow angle
is 210 north of east. Solid contours are positive (down- .
ward) deviations. Dashed contours are negative (upward)
deviations. Contour interval is 10 m.
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INTERFACE CEVIRTION 2L or-I
0H=10.O M DRY= 400

300 _ _ _ _ _ _ _ _ _ _ _

-- -- - - - -- - - - -- - - -

------------------------

CKMJ

--------

I:V
0

0 KM] 420

Figure 9a. Two layer solution with prescribed due east inflow.

16 * .-.. ... ....

....................................... ................

(KM)1 600

Figure 9b. Semi-implicit reduced gravity model solution with dueI east inflow.
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A series of experiments was also made to test the effect of the
island. Results show that if the jet entering the basin at an angle has
too large a velocity (> 50 cm/sec), the 'island deflects the jet to its

north (Figure 10) and the Alboran gyre disappears.

A number of experiments were also performed to test the effect
of decreasing inflow. Figure 11 shows a time series of solutions which
was initialized using the day 360 solution of the pivotal case.
Velocity was then allowed to decrease to 1 cm/sec over a period of 180
days. Although the anticyclonic circulation always remains in the-
western part of the basin, it diminishes both in strength and horizontal

dimensions. Also of note is the small cyclonic cirulation which moves
westward and intensifies. This movement brings about the existence of

two gyres west of Alboran Island, a rather unique situation sometimes
observed in the satellite infrared imagery.

These results all point to the importance of knowing the
magnitude of the incoming velocity as well as its direction. The
Alboran gyre appears to be very sensitive to these changes. Thus in
order to predict the characteristics of the gyre, a time series of the

* velocity entering the Strait of Gibraltar seems necessary.
Experiments using the explicit reduced gravity model have been

recently initiated and used to test the effects of climatological wind
stress. This test is designed to determine the circulation due solely
to wind stress in the Alboran Sea. The second case is forced by
30 cm/sec inflow alone for 360 days and wind stress force is

then added.
Figure 12a, b, c and d show solutions from the third year of

integration at mid month for January, April, July and October. The

conclusion may be drawn from these solutions, that climatological wind
stress alone is responsible for a somewhat weak but consistent
anticyclonic circulation in the western Alboran Sea. These monthly
solutions also show that wind forcing results in small time variations
in the circulation of the Alboran Sea. Figure 13 represents the basin

averaged kinetic and potential energy for the three years of

-18-
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Figure 13. Basin averaged kinetic and potential energy for the three
years of the wind driven case.
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integration. These curves show that although energy varies during the
year, a yearly pattern develops and repeats, indicating that a steady
state has been reached.

Figure 14 presents the solution of the second experiment after

350 days of integration using 30 cm/sec inflow. At day 360, the

climatological wind forcing was added and the model was integrated for
three more years. Results from January, April, July and October of the

fourth year are presented in Figure 15a, b, c and d. The addition of

the wind enhances the horizontal dimensions and intensity of the gyre.
These solutions also show small scale changes in the circulation with
time due to the wind stress. Figure 16 shows the basin averaged energy

curves for the four years of this experiment. Solutions appear to
approach a steady state by year four. Thus from a climatological point

of view wind stress assists the development of an anticyclonic gyre
throughout the year.
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Figure 16. Basin averaged kinetic and potential energy for the four
years of the port and wind driven case.
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SUMMARY

The non-linear reduced gravity and two layer models of Hurlburt

and Thompson (1980) have been adapted (Preller and Heburn, 1983) to

study circulation in the Alboran Sea. Model results using real geometry

and topography in a two layer model show little effect upon the upper

layer by the slowly moving lower layer. More important are the effects

of a coastal feature Cape Tres Forcas, which deflects the flow from the

southern boundary. Also, the Alboran Island deflects the incoming jet

to Its north if velocities greater than 50 cm/sec are used at inflow.

Additional experiments show the high sensitivity of the Alboran gyre to

changes In the magnitudes of the inflow, indicating that a thorough

knowledge of the inflow magnitude, direction and time variation is

necessary to predict the characteristics of the gyre. Reduced gravity

solutions forced by monthly mean climatological wind stress shows that

climatological wind stress enhances the gyre throughout the year and

causes some small time varying changes in the circulation of the entire

basin.
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VERTICAL SHEAR FROM TOPS

INTRODUCTION

The growth and propagation of internal waves in the world

oceans is often attributed to the regions of strong gradients in

velocity (vertical shear) and density. To predict the spatial and

temporal distribution of density and velocity gradients would require an

extensive effort in ocean surveys modeling.

Numerous field experiments have used high resolution velocity

and velocity/temperature microstructure profilers to measure vertical

variation of shear, temperature, Richardson number and turbulence

disspation. For a review of these experiments see Harding et al.,

1983. Though these experiments were performed at various regions in the

northern hemisphere, most were performed over relatively short time

scales (a few days). Thus it would be a practical impossibility to

measure or predict from experimental data sources alone, the density and

velocity gradients over large time and horizontal space scales.

Numerical forecasting of these upper ocean properties with verification

by properly designed field programs serves as a useful alternate

approach.

The best candidate for such a modeling effort is the

Thermodynamic Ocean Prediction System (TOPS) currently operational at

Fleet Numerical Ocean Center (FNOC) (Clancy and Martin, 1981). This

model provides the upper ocean currents required to synoptically

forecast upper ocean vertical shear over large regions of the world's

ocean. TOPS additionally provides velocity components through the mixed

layer making it potentially useful for shear forcasting.
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MODELING APPROACH

The TOPS model is basically a Level 11 turbulence closure model

of Mellor and Yamada (1974). The model results in an isopycnal mixed
layer with vertical uniformity due to mixing caused by wind induced
shear instability and surface cooling. During strong wind forcing
and/or strong surface cooling, the mixed layer deepens due to
entrainment from below caused by turbulent mixing. During weak wind
forcing and/or strong surface heating, the turbulent energy decreases to

the point where active entrainment at the base of the mixed layer is no
longer maintained and the layer shallows. This model has been

extensively tested against observations by Warn-Varnas, Dawson (1981)
and Martin (1982, 1983) at spe~cific experimental and weather ship
locations. It has also been tested in the operational sense by Clancy
and Martin (1979), Clancy et al., (1981), and Clancy and Pollak (1982).

Forcing for the TOPS model is derived from the Navy's global
weather prediction model NOGAPS in the form of surface stresses and heat

fluxes. It is initialized and updated by an analysis scheme which uses
the TOPS forecast products for first guess fields and blends them with
daily XBT observations and satellite derived SST fields. The TOPS model

* is essentially a 3-D mixed layer model consisting of a grid of profiles,
but with advection of temperature and salinity between grid points. At
FNOC, TOPS runs on the standard 63 x 63 northern Hemispheric polar
stereographic grid with 381 km grid resolution at 60 N, Figure 17. The
vertical grid has irregularly spaced levels with Az varying from 5 km at

the surface to 100 km below the 200 m level (Figure 18). Bottom

boundary conditions specify constant values of temperature, salinity and

velocity; surface boundary conditions specify fluxes of heat,

precipitation or evaporation and momentum. Lateral boundary conditions

specify no inflow or outflow and zero fluxes of heat and salinity.
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Figure 18. Vertical grid utilized by TOPS. The quantities T, S, u, v,
ua and va are defined at the depths indicated in the figure.
All turbulence quantities and wa are defined at depths midway

between those shown in the figure.
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EXPERIMENTAL APPROACH

The purpose of this study was to continue the research

initiated last year (Harding et al., 1983) to investigate the potential
of TOPS for shear prediction and to look at temporal and spatial vari-

ability of the TOPS output. In particular, this study investigated long

term shear variations as well as seasonal comparisons.
At the time of these experiments, velocity fields from TOPS had

not been archived for a long enough period of time to examine long term

W variations. Thus the version of TOPS which resides on the Texas Instru-

ment Advanced Scientific Computer (TIASC) at the Naval Research Labora-

tory (NRL) in Washington was run continuously in a hindcast mode for six
months. This version of the model is described in detail by Warn-Varnas

et al., (1983) who used it to predict large scale thermal anomalies in

the North Pacific. The FNOC analysis and model outputs required to

force TOPS are also available at NRL over the entire northern hemisphere
for extended time periods.

The chosen area of study is 1.2 x 21 point subregion of the 63 x

63 FNOC grid over the North Pacific, Figure 19. The TOPS model was
integrated over the six month period March 2 through August 29, 1981.
The model is initialized with March climatological salinity and March 2

thermal structure. The model was then run for approximately six months

using FNOC 6 hourly wind and heat flux fields. A detailed explanation
of initial conditions, boundary conditions and forcing functions are

found in Warn-Varnas et al., (1983). An experiment has been conducted
to determine over what period of time the solutions are affected by

spurious motions induced by initialization. This time period appears to
be 15-20 days. Thus only solutions after a 15 day initialization period

are considered. The FNOC Extended Ocean Thermal Structure (MOTS) pro-

duct provided the thermal structure initialization fields required. Ta-

ble 2 lists the forcing fields, their source and frequency.

From hourly TOPS output, scalar shears
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S ((du/dz) 2 + (dv/dz)2t/2 *

were calculated at levels of TOPS located velocities. Z represents the

vertical distance between the velocities given by the model. Also

calculated, was the gradient Richardson number,

Ri =-(gdp/dz)IS
2

(p water density at a given level, g =gravitation acceleration) atj

levels intermediate to the velocity levels. This number is a measure of

the stability of the water column at that level. Yamada (1975), using a

turbulence closure formulation similar to that used in TOPS, determined

the critical flux of Richardson number exists between .18 - .27. Values

above .25 indicate stability in the water column. Thus for this study

values between 0. and .25 will be used to indicate shear instability.

TABLE 2
FNOC FIELDS USED FOR TOPS FORCING

FIELD SOURCE FREQUENCY

Boundary Layer Wind Planetary Boundary -

Speed Layer Model 6 hourly

Boundary Layer Planetary Boundary
Wind Direction Layer Model 6 hourly

Solar radiation Flux Primitive Equation
Model 6 hourly

Total Heat Flux Primitive Equation
Model 6 hourly

Evaporative Heat Flux Primitive Equation
Model 6 hourly

Precipitation Primitive Equation
LnModel 12 hourly
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TOPS model results will be presented in terms of contour plots

and frequency distributions of shear and Richardson number for various
levels and vertical cross sections within the North Pacific domain. The

purpose is to investigate spacial and temporal variability of the
potential FNOC shear product. The vertical cross sections of Richardson
number show the dividing line between stable and unstable water, the
pycnocline. Regions of shear instability are shaded in these figures.
Note that in all plots depicting shear, values have been scaled upward

by a factor of 104.

6.W
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RESULTS

In previous studies (Harding et al., 1983), we examined the
importance of short time scales, six hourly variations, diurnal

variations and daily variations. These results showed a high degree of

variability even on the shortest time scales. In this study, we will be

concerned with seasonal time scales and long term trends in shear.
The first series of contoured plots will show monthly values of

shear for the six months studied. Values are contoured for various
levels and cross sections starting on March 17 and then depicted
approximatley every 30 days.

Figure 20 shows lines of latitude and longitude along with land

points over the North Pacific region studied. All level plots will be
presented with this orientation. With reference to this horizontal
orientation, cross sectional plots are made along lines drawn from the
center point at the left boundary (6 of 12) and the center point of the
top boundary (12 of 24).

Figure 21 shows a monthly time series of shear at level 2 (7.5

in). Most noticeable in this series of figures is the fact that the
shear intensifies from March to August. The upper left corner of these

* plots develops into a region of consistently high shear (200 x 10-4).
Geographically, this region is to the south-southwest of the Bering
Sea. It is a region of frequent intense storm and frontal passage.
Harding et al., 1983, have shown that shear instability appears directly

correlated to such frontal passage.

Figures 22 and 23 are histograms of the shear at level 2 (7.5
in) for the corresponding times. These figures clearly show the increase

in magnitude of shear with time. Initially the average shear value
centers around 8 x 10-3. By summer, the average value is 1.4 x 10-2

with much higher values appearing then in spring.

The same times series for the long (left to right) cross
section is shown in Figure 24. This time series shows the same trend as
in the level series, larger magnitude shear developing in the summer.
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Figure 21. Monthly variation of the 7.5 m shear (s x 104) for the
months March through August.
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However, it shows one more very important trend. If spring is defined
as March-April with May-June as the transition period into summer, July-

August, it becomes clear that shear extends to much greater depth in
spring then in summer. The deepest shear lies in the region south of

C.. the Bering Sea, the same trend which was observed in the horizontal
sections. The shallowing tendency is also apparent in the shorter cross

sections, Figure 25. Again shear intensifies at the surface in the
summer but extends to much greater depths in spring. Figures 26 and 27

are histograms of shear at level six. These figures also show the
* dramatic decrease in shear from spring to summer at 32.5 m depth. (Note

the difference in scale on the y-axis when comparing). This existence

* - of shear at depth in late winter - early spring is not an unexpected
phenomenon. Figure 19 shows the location of Ocean Station Papa and
Ocean Station November while Figures 28 and 29 show values of mixed
layer depth during 1961 obtained from these stations. The maximum mixed

* layer depth exists in March and slowly decreases until there is a
dramatic shallowing in June, July and August. This well known spring

* transition of the mixed layer occurs abruptly in response to an extended
period of weak winds and strong surface cooling. Figure 30 further
demonstrates the decrease in shear at depth using horizontal sections of
the model results at level 6 (32.5 in). Active shear exists at this

depth in March and April, diminishing in May and all but disappearing
into the summner months. This shallowing of the mixed layer also
explains the increase in shear magnitude during the summer. The model

formulation conserves momentum within the mixed layer, thus as the layer

shallows, velocity as well as shear will increase within the narrow
mixed layer.

Level 6 was chosen as an average depth at which shear might
exist for the entire six month period. The maximum depth to which shear

to extends is shown clearly in the vertical cross sections. Figure 31
shows values of shear starting at noon of March 17 and then for forty-

eight hour intervals until noon of March 23. Using a contour interval

of 5, the maximum depth of these contours extend below 125 m. Figure 32
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Figure 30. Monthly values of 32.5 m shear (s1 x 104) for March through
August.
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represents Richardson numbers for this same time period. These show the

region of instability extending down to approximately 100 m depth.

These two figures show how closely regions of instability correspond to

regions of shear. Figure 33 shows the same time series of shear for

April (16-22). Values of shear extend to approximatley 60 m depth,

having shallowed somewhat from their March position. Richardson number

cross sections (Figure 34) for this period show the development of an

interesting feature, two vertically separate regions of instability.

The shallower region extends from the surface to 25 m depth while the

deeper region exists at an average depth of 80 m. This secondary deep

instability is a remnant of the deeply mixed layer which existed in

March.

In our previous study of shear, a strong correlation existed

between frontal passage and dynamic stability of the mixed layer.

Halpern (1974) saw the same correlation from moorings in the

northeastern Pacific. Figures 35 and 36 are examples of fronts overlain

on Richardson number plots calculated at 10 m depth in March and

- ., April. Most of the area in these figures represents a Richardson number

between 0-.25. Regions of frontal passage are related to Richardson

number values between 0-.25 while values greater than .25 are found in

regions of high pressure systems.

Figures 37 and 38 show histograms of Richardson number at 10 m

for the thirty day intervals presented in Figure 20. Once again, note

the differences of scales on the y-axis. The percentage of Richardson

number lying between 0-.25 drops dramatically in June, July and August.
A seasonal comparison of shear is depicted in the following

figures. A sixty day TOPS model run, initialized at October 29, 1980,

was conducted for November and December of 1980. Solutions at noon of

November 13, 15, 17 and 19 are presented in comparison with solutions at

noon of May 16, 18, 20 and 22. Horizontal cross sections at 7.5 m,

Figures 39 and 40, for these two time periods show that shear near the

surface is higher during the spring then during the fall. In the upper

r. left hand corner of these plots, that region south-southwest for the
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Figure 34. "Short" cross sections of Richardson number for the same
time period as that of Figure 33.
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Bering Sea values of shear are twice as large in May as in November.

The vertical cross sections, Figures 41, 42, 43 and 44 also Indicate

that shear is higher in spring than fall, and deeper in fall than

spring. This comparison agrees with the mixed layer depths at stations

Papa and November. Both of these stations indicated that the mixed

layer depth is greater in November than in May. Solutions at an average

depth of 32.5 m (level 6) for both seasons, Figures 45 and 46, compare

quite closely.

r.'
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SUMMARY AND CONCLUSIONS

This study has attempted to simulate the statistics of temporal

and geographical distribution of shear over the upper 400 m of the
world's oceans. In particular we have examined a large area of the

North Pacific over the six month period March through August of 1981.

Forcing was provided by the prediction fields obtained from FNOC's

hemispheric weather model.

Model results have shown:;

* Surface shear increases from late winter - early spring to

e The region south-southwest of the Bering Sea develops into a

region of very high surface shear in spring and summer.

e The depth to which shear extends is closely correlated to

the mixed layer depth, thus in winter shear values are found

at greater depths then in summer.

* Seasonal comparisons show that the magnitude of shear is

larger in May then in November, but extends to greater

depths in November then in May.

*'hear instab'iiy Is-stroiily linked to the passage of

atmospheric fronts. Regions of stability occur under high
pressure systems and low winds.

e0Very little convective instability exists during the six

month period examined (Rni < 0).
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